Настольный компьютер. Что такое компьютер википедия


Сетевой компьютер — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 декабря 2015; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 декабря 2015; проверки требуют 3 правки.

Сетево́й компью́тер — компьютер, имеющий упрощённые структуры в отличие от персонального компьютера (небольшой объём памяти, возможно отсутствие дисковода и т. п.). Это аппаратная часть для выполнения программы сетевого компьютерного терминала.

В качестве сетевого компьютера могут использоваться устаревшие модели персональных компьютеров, объединённые в большую иерархичную сеть грид-вычислений, в которой также присутствуют сервера. В сетевом компьютере может отображаться экран входа в учётную запись пользователя в операционную систему с дальнейшим отображением рабочего стола. А сама операционная система установлена на сервере.

Термин обозначал, по сути, дешёвый терминал, подключённый к серверу. Сетевой компьютер не в состоянии локально хранить ни прикладные программы, ни файлы с данными. Вместо этого сетевой компьютер получает практически всё, что ему нужно для работы, по сети с серверов. Сетевой компьютер, в отличие от персонального компьютера, не может работать сам по себе: для работы ему нужна сеть и серверы в сети.

Основная польза заключается в снижении совокупной стоимости владения. Цифры, представленные в 1996 году Gartner Group из Стамфорда (штат Коннектикут, США), показали, что ОСВ ПК за типичный амортизационный период в три-пять лет составляет более 40 000 долларов или 8 000—13 000 долларов в год. Gartner Group также подсчитала, что эквивалентная стоимость ПК в 1987 году была менее 20 000 долларов, то есть за последние 10 лет ОСВ удвоилась.

Идея была публично заявлена Ларри Эллисоном на форуме в Париже 4 сентября 1995 года.

ru.wikipedia.org

Что такое ЭВМ?

Компьютер (от английского computer — вычислитель) – это программируемое электронно-вычислительное устройство, предназначенное для хранения и передачи информации, а также обработки данных. То есть компьютер представляет собой комплекс программно-управляемых электронных устройств.

Термин «персональный компьютер» - синоним аббревиатуры «ЭВМ» (электронная вычислительная машина). Когда появились персональные компьютеры, термин ЭВМ вскоре вышел из употребления, будучи замененным термином «компьютер», «PC» или «ПК».

Компьютер может при помощи вычислений производить обработку информации по определенному алгоритму. Помимо этого, программное обеспечение позволяет компьютеру хранить, принимать и искать информацию, а также выводить ее на различные устройства ввода. Название компьютеров произошло от их основной функции – вычислений, но сегодня помимо вычислений компьютеры используют для обработки информации, а также для игр.

Схему компьютера предложил в1949 году математик Джон фон Нейман, и с тех пор принцип устройства почти не изменился.

По принципам фон Неймана компьютер должен состоять из следующих устройств:

арифметическо-логическое устройство, которое выполняет логические и арифметические операции;

запоминающее устройство для хранения данных;

устройство управления, организующее процесс выполнения программ;

устройства ввода-вывода информации.

Компьютерная память должна состоять из определенного числа пронумерованных ячеек, каждая из которых содержит инструкции программ или обрабатываемые данные. Ячейки доступны всем устройствам компьютера.

Большинство компьютеров проектируются по принципу открытой архитектуры:

описание конфигурации и принципа действия ПК, позволяющее собирать компьютер из отдельных деталей и узлов;

наличие в компьютере расширительных гнезд, в которые можно вставлять устройства, которые соответствуют заданному стандарту.

В большинстве сегодняшних компьютеров проблема в первую очередь описывается в понятном виде, предоставляя информацию в двоичном виде, а затем она обрабатывается при помощи логики и простой алгебры. Так как почти всю математику можно свести к выполнению булевых операций, то при помощи быстрого электронного компьютера можно решить большинство математических задач. Результат вычислений представляется пользователю устройствами ввода информации – принтерами, ламповыми индикаторами, мониторами, проекторами.

Однако было выяснено, что компьютерам не под силу решить любую математическую задачу. Английский математик Алан Тьюринг описал первые задачи, которые невозможно решить с помощью компьютера.

Применение компьютеров

Первые ЭВМ были созданы только для вычислений (что следует из названия), и первым высокоуровневым языком программирования стал Фортран, который был предназначен только для производства математических расчетов.

Затем компьютерам нашли еще одно применение – базы данных. В первую очередь в них нуждались банки и правительства. Для баз данных требовались более сложные компьютеры с развитыми системами хранения информации и ввода-вывода. Был разработан соответствующий этим требованиям язык Кобол. Через некоторое время появились системы управления базами данных (СУБД), у которых были собственные языки программирования.

Еще одно применение компьютеров - управление различными устройствами. Эта область развивалась постепенно, от узкоспециализированных устройств (зачастую аналоговых) до стандартных компьютерных систем, с помощью которых запускаются управляющие программы. Помимо этого, все больше современной техники включает в себя управляющий компьютер.

Сегодня развитие компьютера достигло такого уровня, что он является основным информационным инструментом как дома, так и в офисе. Таким образом, через компьютер осуществляется почти вся работа с информацией – от набора текстов до просмотра фильмов. Это также относится к хранению и пересылке информации.

Ученые используют современные суперкомпьютеры, чтобы смоделировать сложные биологические и физические процессы, такие как климатические изменения или ядерные реакции. Некоторые проекты осуществляются с использованием распределённых вычислений, при которых большое количество не очень мощных компьютеров одновременно решает разные части одной и той же задачи, тем самым формируя один мощный компьютер.

Самое сложное и пока еще не сильно развитое направление применения компьютеров - искусственный интеллект – использование компьютеров в решении задач, которые не имеют четкого относительно простого алгоритма. Примерами таких задач являются игры, экспертные системы, машинный перевод текста.

mydiv.net

Настольный компьютер - это... Что такое Настольный компьютер?

 Настольный компьютер Персональный настольный компьютер

Насто́льный компью́тер (англ. desktop computer) — стационарный персональный компьютер, предназначенный в первую очередь для работы в офисе или в домашних условиях. Термин обычно используется для того, чтобы обозначить вид компьютера и отличить его от компьютеров других типов, например, портативного компьютера, карманного компьютера, встроенного компьютера или сервера.

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 23 июня 2012.
Категории:
  • Компьютер
  • Компьютеры по назначению

Wikimedia Foundation. 2010.

  • Абуджа
  • Лингвистическое программное обеспечение

Смотреть что такое "Настольный компьютер" в других словарях:

  • НАСТОЛЬНЫЙ КОМПЬЮТЕР — (desktop computer), стационарный персональный компьютер (см. ПЕРСОНАЛЬНЫЙ КОМПЬЮТЕР), специально предназначенный для работы в офисе или дома. Термин обычно используется для того, чтобы отличить настольный компьютер от компьютеров других типов,… …   Энциклопедический словарь

  • настольный компьютер — — [Интент] Тематики информационные технологии в целом EN desktop computerdesktop interfaceDT computer …   Справочник технического переводчика

  • портативный настольный компьютер — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN portable desktop computer …   Справочник технического переводчика

  • портативный настольный компьютер без дисплея и клавиатуры — Системный блок представляет собой малогабаритную моноблочную переносимую конструкцию, позволяющую устанавливать его непосредственно на рабочую поверхность или на подставку. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по… …   Справочник технического переводчика

  • Настольный персональный компьютер — Запрос «PC» перенаправляется сюда. Cм. также другие значения. Эта статья о всех видах персональных компьютеров, о самой распространённой платформе см.: IBM PC совместимый компьютер. Основные составные части персонального компьютера Персональный… …   Википедия

  • Компьютер — Схема персонального компьютера: 1. Монитор 2. Материнская плата 3 …   Википедия

  • Компьютер общего назначения — компьютер, способный решить любую задачу, которая может быть выражена в виде программы и выполнена в рамках разумных ограничений, накладываемых ёмкостью системы хранения компьютера, допустимым размером программы, скоростью её выполнения и… …   Википедия

  • Персональный компьютер — Запрос «PC» перенаправляется сюда; см. также другие значения. Иное название этого понятия  «ПК»; см. также другие значения. Эта статья  обо всех видах ПК. О самой распространённой платформе см. IBM PC совместимый… …   Википедия

  • Квантовый компьютер — 3 кубита квантового регистра против 3 битов обычного Квантовый компьютер вычислительное устройство, работающее на основе квантовой механики. Квантовый компьютер принципиально отличается от классических компьютеров, работающих на основе …   Википедия

  • Домашний компьютер — У этого термина существуют и другие значения, см. Домашний компьютер (значения). У этого термина существуют и другие значения, см. БК (значения). Бытовой ко …   Википедия

dvc.academic.ru

Компьютер - это... Что такое Компьютер?

Компью́тер (англ. computer, МФА: [kəmˈpjuː.tə(ɹ)][1] — «вычислитель») — устройство или система, способная выполнять заданную, чётко определённую последовательность операций. Это чаще всего операции численных расчётов и манипулирования данными, однако сюда относятся и операции ввода-вывода. Описание последовательности операций называется программой.[2]Электро́нная вычисли́тельная маши́на, ЭВМ — комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.[3]

Название «ЭВМ», принятое в русскоязычной научной литературе, является синонимом компьютера. В настоящее время оно почти вытеснено из бытового употребления и в основном используется инженерами цифровой электроники, как правовой термин в юридических документах, а также в историческом смысле — для обозначения компьютерной техники 1940—1980-х годов и больших вычислительных устройств, в отличие от персональных.

Электронная вычислительная машина подразумевает использование электронных компонентов в качестве её функциональных узлов, однако компьютер может быть устроен и на других принципах — он может быть механическим, биологическим, оптическим, квантовым и т. п. (подробнее: Классы компьютеров#По виду рабочей среды), работая за счёт перемещения механических частей, движения электронов, фотонов или эффектов других физических явлений. Кроме того, по типу функционирования вычислительная машина может быть цифровой (ЦВМ) и аналоговой (АВМ).

Слово компьютер является производным от английских слов to compute, computer, которые переводятся как «вычислять», «вычислитель» (английское слово, в свою очередь, происходит от латинского computāre — «вычислять»). Первоначально в английском языке это слово означало человека, производящего арифметические вычисления с привлечением или без привлечения механических устройств. В дальнейшем его значение было перенесено на сами машины, однако современные компьютеры выполняют множество задач, не связанных напрямую с математикой.

Впервые трактовка слова компьютер появилась в 1897 году в Оксфордском словаре английского языка. Его составители тогда понимали компьютер как механическое вычислительное устройство. В 1946 году словарь пополнился дополнениями, позволяющими разделить понятия цифрового, аналогового и электронного компьютера.

История

  • 3000 лет до н. э. — в Древнем Вавилоне были изобретены первые счёты — абак.
  • 500 лет до н. э. — в Китае появился более «современный» вариант абака с косточками на соломинках — суаньпань.
  • 87 год до н. э. — в Греции был изготовлен «антикитерский механизм» — механическое устройство на базе зубчатых передач, представляющее собой специализированный астрономический вычислитель.
  • 1492 год — Леонардо да Винчи в одном из своих дневников приводит эскиз 13-разрядного суммирующего устройства с десятизубцовыми кольцами. Хотя работающее устройство на базе этих чертежей было построено только в XX веке, всё же реальность проекта Леонардо да Винчи подтвердилась.
Суммирующая машина Паскаля
  • XVI век — в России появились счёты, в которых было 10 деревянных шариков на проволоке.
  • 1623 год — Вильгельм Шиккард, профессор университета Тюбингена, разрабатывает устройство на основе зубчатых колес («считающие часы») для сложения и вычитания шестиразрядных десятичных чисел. Было ли устройство реализовано при жизни изобретателя, достоверно не известно, но в 1960 году оно было воссоздано и проявило себя вполне работоспособным.
  • 1630 год — Ричард Деламейн создаёт круговую логарифмическую линейку.
  • 1642 год — Блез Паскаль представляет «Паскалину» — первое реально осуществлённое и получившее известность механическое цифровое вычислительное устройство. Прототип устройства суммировал и вычитал пятиразрядные десятичные числа. Паскаль изготовил более десяти таких вычислителей, причём последние модели оперировали числами с восемью десятичными разрядами.
  • 1673 год — известный немецкий философ и математик Готфрид Вильгельм Лейбниц построил механический калькулятор, который выполнял умножение, деление, сложение и вычитание. Позже Лейбниц описал двоичную систему счисления и обнаружил, что если записывать определенные группы двоичных чисел одно под другим, то нули и единицы в вертикальных столбцах будут регулярно повторяться, и это открытие навело его на мысль, что существуют совершенно новые законы математики. Лейбниц решил, что двоичный код оптимален для системы механики, которая может работать на основе перемежающихся активных и пассивных простых циклов. Он пытался применить двоичный код в механике и даже сделал чертёж вычислительной машины, работавшей на основе его новой математики, но вскоре понял, что технологические возможности его времени не позволяют создать такую машину.[4]
  • Примерно в это же время Исаак Ньютон закладывает основы математического анализа.
  • 1723 год — немецкий математик и астроном Христиан Людвиг Герстен на основе работ Лейбница создал арифметическую машину. Машина высчитывала частное и число последовательных операций сложения при умножении чисел. Кроме того, в ней была предусмотрена возможность контроля за правильностью ввода данных.
  • 1786 год — немецкий военный инженер Иоганн Мюллер в ходе работ по усовершенствованию механического калькулятора на ступенчатых валиках Лейбница, придуманного его соотечественником Филиппом Хахном[5], выдвигает идею «разностной машины» — специализированного калькулятора для табулирования логарифмов, вычисляемых разностным методом.
  • 1801 год — Жозеф Мари Жаккар строит ткацкий станок с программным управлением, программа работы которого задается с помощью комплекта перфокарт.
  • 1820 год — первый промышленный выпуск арифмометров. Первенство принадлежит французу Тома де Кальмару.
  • 1822 год — английский математик Чарльз Бэббидж изобрёл, но не смог построить, первую разностную машину (специализированный арифмометр для автоматического построения математических таблиц) (см.: Разностная машина Чарльза Бэббиджа).
  • 1840 год — Томас Фаулер (англ. Great Torrington) построил деревянную троичную счётную машину с троичной симметричной системой счисления.[6][7]
  • 1855 год — братья Георг и Эдвард Шутц (англ. George & Edvard Scheutz) из Стокгольма построили первую разностную машину на основе работ Чарльза Бэббиджа.
  • 1876 год — русским математиком П. Л. Чебышевым создан суммирующий аппарат с непрерывной передачей десятков. В 1881 году он же сконструировал к нему приставку для умножения и деления (арифмометр Чебышёва).
  • 1884—1887 годы — Холлерит разработал электрическую табулирующую систему, которая использовалась в переписях населения США 1890 и 1900 годов и Российской империи в 1897 году.
  • 1912 год — создана машина для интегрирования обыкновенных дифференциальных уравнений по проекту русского учёного А. Н. Крылова.
  • 1927 год — в Массачусетском технологическом институте (MIT) Вэниваром Бушем был разработан механический аналоговый компьютер.[8]
  • 1938 год — немецкий инженер Конрад Цузе вскоре после окончания в 1935 году Берлинского политехнического института построил свою первую машину, названную Z1. (В качестве его соавтора упоминается также Гельмут Шрейер (нем. Helmut Schreyer)). Это полностью механическая программируемая цифровая машина. Модель была пробной и в практической работе не использовалась. Её восстановленная версия хранится в Немецком техническом музее в Берлине. В том же году Цузе приступил к созданию машины Z2 (Сначала эти компьютеры назывались V1 и V2. По немецки это звучит «Фау1» и «Фау2» и чтобы их не путали с ракетами, компьютеры переименовали в Z1 и Z2).

Экспоненциальное развитие компьютерной техники

Диаграмма Закона Мура. Количество транзисторов удваивается каждые 2 года

После изобретения интегральной схемы развитие компьютерной техники резко ускорилось. Этот эмпирический факт, замеченный в 1965 году соучредителем компании Intel Гордоном Е. Муром, назвали по его имени Законом Мура. Столь же стремительно развивается и процесс миниатюризации компьютеров. Первые электронно-вычислительные машины (например, такие, как созданный в 1946 году ЭНИАК) были огромными устройствами, весящими тонны, занимавшими целые комнаты и требовавшими большого количества обслуживающего персонала для успешного функционирования. Они были настолько дороги, что их могли позволить себе только правительства и большие исследовательские организации, и представлялись настолько экзотическими, что казалось, будто небольшая горстка таких систем сможет удовлетворить любые будущие потребности. В контрасте с этим, современные компьютеры — гораздо более мощные и компактные и гораздо менее дорогие — стали воистину вездесущими.

Математические модели

Архитектура и структура

Архитектура компьютеров может изменяться в зависимости от типа решаемых задач. Оптимизация архитектуры компьютера производится с целью максимально реалистично математически моделировать исследуемые физические (или другие) явления. Так, электронные потоки могут использоваться в качестве моделей потоков воды при компьютерном моделировании (симуляции) дамб, плотин или кровотока в человеческом мозгу. Подобным образом сконструированные аналоговые компьютеры были обычны в 1960-х годах, однако сегодня стали достаточно редким явлением.

Результат выполненной задачи может быть представлен пользователю при помощи различных устройств ввода-вывода информации, таких как ламповые индикаторы, мониторы, принтеры, проекторы и т. п.

Классификация

По назначению

Персональный компьютер IBM PC/XT

Элементная основа

Первая троичная ЭВМ «Сетунь» на ферритдиодных ячейках была построена Брусенцовым в МГУ.

Поверхностный характер представленного подхода к классификации компьютеров очевиден. Он обычно используется лишь для обозначения общих черт наиболее часто встречающихся компьютерных устройств. Быстрые темпы развития вычислительной техники означают постоянное расширение областей её применения и быстрое устаревание используемых понятий. Для более строгого описания особенностей того или иного компьютера обычно требуется использовать другие схемы классификаций.

Физическая реализация

Более строгий подход к классификации основан на отслеживании используемых при создании компьютеров технологий. Самые ранние компьютеры были полностью механическими системами. Тем не менее, уже в 1930-х годах телекоммуникационная промышленность предложила разработчикам новые, электромеханические компоненты (реле), а в 1940-х были созданы первые полностью электронные компьютеры, имевшие в своей основе электронные лампы. В 1950—1960-х годах на смену лампам пришли транзисторы, а в конце 1960-х — начале 1970-х годов — используемые и сегодня полупроводниковые интегральные схемы (кремниевые чипы).

Приведённый перечень технологий не является исчерпывающим; он описывает только основную тенденцию развития вычислительной техники. В разные периоды истории исследовалась возможность создания вычислительных машин на основе множества других, ныне позабытых и порою весьма экзотических технологий. Например, существовали планы создания гидравлических и пневматических компьютеров, между 1903 и 1909 годами некто Перси И. Луджет даже разрабатывал проект программируемой аналитической машины, работающей на базе пошивочных механизмов (переменные этого вычислителя планировалось определять при помощи ниточных катушек).

В настоящее время ведутся серьёзные работы по созданию оптических компьютеров, использующих вместо традиционного электричества световые сигналы. Другое перспективное направление подразумевает использование достижений молекулярной биологии и исследований ДНК. И, наконец, один из самых новых подходов, способный привести к грандиозным изменениям в области вычислительной техники, основан на разработке квантовых компьютеров.

Впрочем, в большинстве случаев технология исполнения компьютера является гораздо менее важной, чем заложенные в его основу конструкторские решения.

По способностям

Одним из наиболее простых способов классифицировать различные типы вычислительных устройств является определение их способностей. Все вычислители могут, таким образом, быть отнесены к одному из трёх типов:

Современный компьютер общего назначения

При рассмотрении современных компьютеров наиболее важной особенностью, отличающей их от ранних вычислительных устройств, является то, что при соответствующем программировании любой компьютер может подражать поведению любого другого (хоть эта возможность и ограничена, к примеру, вместимостью средств хранения данных или различием в скорости). Таким образом, предполагается, что современные машины могут эмулировать любое вычислительное устройство будущего, которое когда-либо может быть создано. В некотором смысле эта пороговая способность полезна для различия компьютеров общего назначения и устройств специального назначения. Определение «компьютер общего назначения» может быть формализовано в требовании, чтобы конкретный компьютер был способен подражать поведению универсальной машины Тьюринга. Первым компьютером, удовлетворяющим такому условию, считается машина Z3, созданная немецким инженером Конрадом Цузе в 1941 году (доказательство этого факта было проведено в 1998 году).

Конструктивные особенности

Современные компьютеры используют весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики. Ниже приведены наиболее важные вопросы, решаемые создателями компьютеров:

Цифровой или аналоговый

Фундаментальным решением при проектировании компьютера является выбор, будет ли он цифровой или аналоговой системой. Если цифровые компьютеры работают с дискретными численными или символьными переменными, то аналоговые предназначены для обработки непрерывных потоков поступающих данных. Сегодня цифровые компьютеры имеют значительно более широкий диапазон применения, хотя их аналоговые собратья все ещё используются для некоторых специальных целей. Следует также упомянуть, что здесь возможны и другие подходы, применяемые, к примеру, в импульсных и квантовых вычислениях, однако пока что они являются либо узкоспециализированными, либо экспериментальными решениями.

Примерами аналоговых вычислителей, от простого к сложному, являются: номограмма, логарифмическая линейка, астролябия, осциллограф, телевизор, аналоговый звуковой процессор, автопилот, мозг. [источник не указан 41 день]

Среди наиболее простых дискретных вычислителей известен абак, или обыкновенные счёты; наиболее сложной из такого рода систем является суперкомпьютер.

Система счисления

Примером компьютера на основе десятичной системы счисления является первая американская вычислительная машина Марк I.

Важнейшим шагом в развитии вычислительной техники стал переход к внутреннему представлению чисел в двоичной форме.[9] Это значительно упростило конструкции вычислительных устройств и периферийного оборудования. Принятие за основу двоичной системы счисления позволило более просто реализовывать арифметические функции и логические операции.

Тем не менее, переход к двоичной логике был не мгновенным и безоговорочным процессом. Многие конструкторы пытались разработать компьютеры на основе более привычной для человека десятичной системы счисления. Применялись и другие конструктивные решения. Так, одна из ранних советских машин работала на основе троичной системы счисления, использование которой во многих отношениях более выгодно и удобно по сравнению с двоичной системой (проект троичного компьютера Сетунь был разработан и реализован талантливым советским инженером Н. П. Брусенцовым).

Под руководством академика Хетагурова Я. А. разработан «высоконадёжный и защищённый микропроцессор недвоичной системы кодирования для устройств реального времени», использующий систему кодирования 1 из 4 с активным нулём.

В целом, однако, выбор внутренней системы представления данных не меняет базовых принципов работы компьютера — любой компьютер может эмулировать любой другой.

Хранение программ и данных

Во время выполнения вычислений часто бывает необходимо сохранить промежуточные данные для их дальнейшего использования. Производительность многих компьютеров в значительной степени определяется скоростью, с которой они могут читать и писать значения в (из) памяти и её общей ёмкости. Первоначально компьютерная память использовалась только для хранения промежуточных значений, но вскоре было предложено сохранять код программы в той же самой памяти (архитектура фон Неймана, она же «принстонская»), что и данные. Это решение используется сегодня в большинстве компьютерных систем. Однако для управляющих контроллеров (микро-ЭВМ) и сигнальных процессоров более удобной оказалась схема, при которой данные и программы хранятся в различных разделах памяти (гарвардская архитектура).

Программирование

Джон фон Нейман — один из основоположников создания архитектуры современных компьютеров

Способность машины к выполнению определённого изменяемого набора инструкций (программы) без необходимости физической переконфигурации является фундаментальной особенностью компьютеров. Дальнейшее развитие эта особенность получила, когда машины приобрели способность динамически управлять процессом выполнения программы. Это позволяет компьютерам самостоятельно изменять порядок выполнения инструкций программы в зависимости от состояния данных. Первую реально работающую программируемую вычислительную машину сконструировал немец Конрад Цузе в 1941 году.

При помощи вычислений компьютер способен обрабатывать информацию по определённому алгоритму. Решение любой задачи для компьютера является последовательностью вычислений.

В большинстве современных компьютеров проблема сначала описывается в понятном им виде (при этом вся информация как правило представляется в двоичной форме — в виде единиц и нулей, хотя компьютер может быть реализован и на других основаниях, как целочисленных — например, троичный компьютер, так и нецелых), после чего действия по её обработке сводятся к применению простой алгебры логики. Поскольку практически вся математика может быть сведена к выполнению булевых операций[источник не указан 512 дней], достаточно быстрый электронный компьютер может быть применим для решения большинства математических задач, а также и большинства задач по обработке информации, которые могут быть сведены к математическим.

Было обнаружено, что компьютеры могут решить не любую математическую задачу. Впервые задачи, которые не могут быть решены при помощи компьютеров, были описаны английским математиком Аланом Тьюрингом.

Применение

Трёхмерная карта поверхности участка земной суши, построенная при помощи компьютерной программы

Первые компьютеры создавались исключительно для вычислений (что отражено в названиях «компьютер» и «ЭВМ»). Даже самые примитивные компьютеры в этой области во много раз превосходят людей (если не считать некоторых уникальных людей-счётчиков). Не случайно первым высокоуровневым языком программирования был Фортран, предназначенный исключительно для выполнения математических расчётов.

Вторым крупным применением были базы данных. Прежде всего, они были нужны правительствам и банкам. Базы данных требуют уже более сложных компьютеров с развитыми системами ввода-вывода и хранения информации. Для этих целей был разработан язык Кобол. Позже появились СУБД со своими собственными языками программирования.

Третьим применением было управление всевозможными устройствами. Здесь развитие шло от узкоспециализированных устройств (часто аналоговых) к постепенному внедрению стандартных компьютерных систем, на которых запускаются управляющие программы. Кроме того, всё бо́льшая часть техники начинает включать в себя управляющий компьютер.

Четвёртое. Компьютеры развились настолько, что стали главным информационным инструментом как в офисе, так и дома. Теперь почти любая работа с информацией зачастую осуществляется через компьютер — будь то набор текста или просмотр фильмов. Это относится и к хранению информации, и к её пересылке по каналам связи. Основное применение современных домашних компьютеров — навигация в Интернете и игры.

Пятое. Современные суперкомпьютеры используются для компьютерного моделирования сложных физических, биологических, метеорологических и других процессов и решения прикладных задач. Например, для моделирования ядерных реакций или климатических изменений. Некоторые проекты проводятся при помощи распределённых вычислений, когда большое число относительно слабых компьютеров одновременно работает над небольшими частями общей задачи, формируя таким образом очень мощный компьютер.

Наиболее сложным и слаборазвитым применением компьютеров является искусственный интеллект — применение компьютеров для решения таких задач, где нет чётко определённого более или менее простого алгоритма. Примеры таких задач — игры, машинный перевод текста, экспертные системы.

См. также

Примечания

Ссылки

dikc.academic.ru

Компьютер - это... Что такое Компьютер?

Компью́тер (англ. computer, МФА: [kəmˈpjuː.tə(ɹ)][1] — «вычислитель») — устройство или система, способная выполнять заданную, чётко определённую последовательность операций. Это чаще всего операции численных расчётов и манипулирования данными, однако сюда относятся и операции ввода-вывода. Описание последовательности операций называется программой.[2]Электро́нная вычисли́тельная маши́на, ЭВМ — комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.[3]

Название «ЭВМ», принятое в русскоязычной научной литературе, является синонимом компьютера. В настоящее время оно почти вытеснено из бытового употребления и в основном используется инженерами цифровой электроники, как правовой термин в юридических документах, а также в историческом смысле — для обозначения компьютерной техники 1940—1980-х годов и больших вычислительных устройств, в отличие от персональных.

Электронная вычислительная машина подразумевает использование электронных компонентов в качестве её функциональных узлов, однако компьютер может быть устроен и на других принципах — он может быть механическим, биологическим, оптическим, квантовым и т. п. (подробнее: Классы компьютеров#По виду рабочей среды), работая за счёт перемещения механических частей, движения электронов, фотонов или эффектов других физических явлений. Кроме того, по типу функционирования вычислительная машина может быть цифровой (ЦВМ) и аналоговой (АВМ).

Слово компьютер является производным от английских слов to compute, computer, которые переводятся как «вычислять», «вычислитель» (английское слово, в свою очередь, происходит от латинского computāre — «вычислять»). Первоначально в английском языке это слово означало человека, производящего арифметические вычисления с привлечением или без привлечения механических устройств. В дальнейшем его значение было перенесено на сами машины, однако современные компьютеры выполняют множество задач, не связанных напрямую с математикой.

Впервые трактовка слова компьютер появилась в 1897 году в Оксфордском словаре английского языка. Его составители тогда понимали компьютер как механическое вычислительное устройство. В 1946 году словарь пополнился дополнениями, позволяющими разделить понятия цифрового, аналогового и электронного компьютера.

История

  • 3000 лет до н. э. — в Древнем Вавилоне были изобретены первые счёты — абак.
  • 500 лет до н. э. — в Китае появился более «современный» вариант абака с косточками на соломинках — суаньпань.
  • 87 год до н. э. — в Греции был изготовлен «антикитерский механизм» — механическое устройство на базе зубчатых передач, представляющее собой специализированный астрономический вычислитель.
  • 1492 год — Леонардо да Винчи в одном из своих дневников приводит эскиз 13-разрядного суммирующего устройства с десятизубцовыми кольцами. Хотя работающее устройство на базе этих чертежей было построено только в XX веке, всё же реальность проекта Леонардо да Винчи подтвердилась.
Суммирующая машина Паскаля
  • XVI век — в России появились счёты, в которых было 10 деревянных шариков на проволоке.
  • 1623 год — Вильгельм Шиккард, профессор университета Тюбингена, разрабатывает устройство на основе зубчатых колес («считающие часы») для сложения и вычитания шестиразрядных десятичных чисел. Было ли устройство реализовано при жизни изобретателя, достоверно не известно, но в 1960 году оно было воссоздано и проявило себя вполне работоспособным.
  • 1630 год — Ричард Деламейн создаёт круговую логарифмическую линейку.
  • 1642 год — Блез Паскаль представляет «Паскалину» — первое реально осуществлённое и получившее известность механическое цифровое вычислительное устройство. Прототип устройства суммировал и вычитал пятиразрядные десятичные числа. Паскаль изготовил более десяти таких вычислителей, причём последние модели оперировали числами с восемью десятичными разрядами.
  • 1673 год — известный немецкий философ и математик Готфрид Вильгельм Лейбниц построил механический калькулятор, который выполнял умножение, деление, сложение и вычитание. Позже Лейбниц описал двоичную систему счисления и обнаружил, что если записывать определенные группы двоичных чисел одно под другим, то нули и единицы в вертикальных столбцах будут регулярно повторяться, и это открытие навело его на мысль, что существуют совершенно новые законы математики. Лейбниц решил, что двоичный код оптимален для системы механики, которая может работать на основе перемежающихся активных и пассивных простых циклов. Он пытался применить двоичный код в механике и даже сделал чертёж вычислительной машины, работавшей на основе его новой математики, но вскоре понял, что технологические возможности его времени не позволяют создать такую машину.[4]
  • Примерно в это же время Исаак Ньютон закладывает основы математического анализа.
  • 1723 год — немецкий математик и астроном Христиан Людвиг Герстен на основе работ Лейбница создал арифметическую машину. Машина высчитывала частное и число последовательных операций сложения при умножении чисел. Кроме того, в ней была предусмотрена возможность контроля за правильностью ввода данных.
  • 1786 год — немецкий военный инженер Иоганн Мюллер в ходе работ по усовершенствованию механического калькулятора на ступенчатых валиках Лейбница, придуманного его соотечественником Филиппом Хахном[5], выдвигает идею «разностной машины» — специализированного калькулятора для табулирования логарифмов, вычисляемых разностным методом.
  • 1801 год — Жозеф Мари Жаккар строит ткацкий станок с программным управлением, программа работы которого задается с помощью комплекта перфокарт.
  • 1820 год — первый промышленный выпуск арифмометров. Первенство принадлежит французу Тома де Кальмару.
  • 1822 год — английский математик Чарльз Бэббидж изобрёл, но не смог построить, первую разностную машину (специализированный арифмометр для автоматического построения математических таблиц) (см.: Разностная машина Чарльза Бэббиджа).
  • 1840 год — Томас Фаулер (англ. Great Torrington) построил деревянную троичную счётную машину с троичной симметричной системой счисления.[6][7]
  • 1855 год — братья Георг и Эдвард Шутц (англ. George & Edvard Scheutz) из Стокгольма построили первую разностную машину на основе работ Чарльза Бэббиджа.
  • 1876 год — русским математиком П. Л. Чебышевым создан суммирующий аппарат с непрерывной передачей десятков. В 1881 году он же сконструировал к нему приставку для умножения и деления (арифмометр Чебышёва).
  • 1884—1887 годы — Холлерит разработал электрическую табулирующую систему, которая использовалась в переписях населения США 1890 и 1900 годов и Российской империи в 1897 году.
  • 1912 год — создана машина для интегрирования обыкновенных дифференциальных уравнений по проекту русского учёного А. Н. Крылова.
  • 1927 год — в Массачусетском технологическом институте (MIT) Вэниваром Бушем был разработан механический аналоговый компьютер.[8]
  • 1938 год — немецкий инженер Конрад Цузе вскоре после окончания в 1935 году Берлинского политехнического института построил свою первую машину, названную Z1. (В качестве его соавтора упоминается также Гельмут Шрейер (нем. Helmut Schreyer)). Это полностью механическая программируемая цифровая машина. Модель была пробной и в практической работе не использовалась. Её восстановленная версия хранится в Немецком техническом музее в Берлине. В том же году Цузе приступил к созданию машины Z2 (Сначала эти компьютеры назывались V1 и V2. По немецки это звучит «Фау1» и «Фау2» и чтобы их не путали с ракетами, компьютеры переименовали в Z1 и Z2).

Экспоненциальное развитие компьютерной техники

Диаграмма Закона Мура. Количество транзисторов удваивается каждые 2 года

После изобретения интегральной схемы развитие компьютерной техники резко ускорилось. Этот эмпирический факт, замеченный в 1965 году соучредителем компании Intel Гордоном Е. Муром, назвали по его имени Законом Мура. Столь же стремительно развивается и процесс миниатюризации компьютеров. Первые электронно-вычислительные машины (например, такие, как созданный в 1946 году ЭНИАК) были огромными устройствами, весящими тонны, занимавшими целые комнаты и требовавшими большого количества обслуживающего персонала для успешного функционирования. Они были настолько дороги, что их могли позволить себе только правительства и большие исследовательские организации, и представлялись настолько экзотическими, что казалось, будто небольшая горстка таких систем сможет удовлетворить любые будущие потребности. В контрасте с этим, современные компьютеры — гораздо более мощные и компактные и гораздо менее дорогие — стали воистину вездесущими.

Математические модели

Архитектура и структура

Архитектура компьютеров может изменяться в зависимости от типа решаемых задач. Оптимизация архитектуры компьютера производится с целью максимально реалистично математически моделировать исследуемые физические (или другие) явления. Так, электронные потоки могут использоваться в качестве моделей потоков воды при компьютерном моделировании (симуляции) дамб, плотин или кровотока в человеческом мозгу. Подобным образом сконструированные аналоговые компьютеры были обычны в 1960-х годах, однако сегодня стали достаточно редким явлением.

Результат выполненной задачи может быть представлен пользователю при помощи различных устройств ввода-вывода информации, таких как ламповые индикаторы, мониторы, принтеры, проекторы и т. п.

Классификация

По назначению

Персональный компьютер IBM PC/XT

Элементная основа

Первая троичная ЭВМ «Сетунь» на ферритдиодных ячейках была построена Брусенцовым в МГУ.

Поверхностный характер представленного подхода к классификации компьютеров очевиден. Он обычно используется лишь для обозначения общих черт наиболее часто встречающихся компьютерных устройств. Быстрые темпы развития вычислительной техники означают постоянное расширение областей её применения и быстрое устаревание используемых понятий. Для более строгого описания особенностей того или иного компьютера обычно требуется использовать другие схемы классификаций.

Физическая реализация

Более строгий подход к классификации основан на отслеживании используемых при создании компьютеров технологий. Самые ранние компьютеры были полностью механическими системами. Тем не менее, уже в 1930-х годах телекоммуникационная промышленность предложила разработчикам новые, электромеханические компоненты (реле), а в 1940-х были созданы первые полностью электронные компьютеры, имевшие в своей основе электронные лампы. В 1950—1960-х годах на смену лампам пришли транзисторы, а в конце 1960-х — начале 1970-х годов — используемые и сегодня полупроводниковые интегральные схемы (кремниевые чипы).

Приведённый перечень технологий не является исчерпывающим; он описывает только основную тенденцию развития вычислительной техники. В разные периоды истории исследовалась возможность создания вычислительных машин на основе множества других, ныне позабытых и порою весьма экзотических технологий. Например, существовали планы создания гидравлических и пневматических компьютеров, между 1903 и 1909 годами некто Перси И. Луджет даже разрабатывал проект программируемой аналитической машины, работающей на базе пошивочных механизмов (переменные этого вычислителя планировалось определять при помощи ниточных катушек).

В настоящее время ведутся серьёзные работы по созданию оптических компьютеров, использующих вместо традиционного электричества световые сигналы. Другое перспективное направление подразумевает использование достижений молекулярной биологии и исследований ДНК. И, наконец, один из самых новых подходов, способный привести к грандиозным изменениям в области вычислительной техники, основан на разработке квантовых компьютеров.

Впрочем, в большинстве случаев технология исполнения компьютера является гораздо менее важной, чем заложенные в его основу конструкторские решения.

По способностям

Одним из наиболее простых способов классифицировать различные типы вычислительных устройств является определение их способностей. Все вычислители могут, таким образом, быть отнесены к одному из трёх типов:

Современный компьютер общего назначения

При рассмотрении современных компьютеров наиболее важной особенностью, отличающей их от ранних вычислительных устройств, является то, что при соответствующем программировании любой компьютер может подражать поведению любого другого (хоть эта возможность и ограничена, к примеру, вместимостью средств хранения данных или различием в скорости). Таким образом, предполагается, что современные машины могут эмулировать любое вычислительное устройство будущего, которое когда-либо может быть создано. В некотором смысле эта пороговая способность полезна для различия компьютеров общего назначения и устройств специального назначения. Определение «компьютер общего назначения» может быть формализовано в требовании, чтобы конкретный компьютер был способен подражать поведению универсальной машины Тьюринга. Первым компьютером, удовлетворяющим такому условию, считается машина Z3, созданная немецким инженером Конрадом Цузе в 1941 году (доказательство этого факта было проведено в 1998 году).

Конструктивные особенности

Современные компьютеры используют весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики. Ниже приведены наиболее важные вопросы, решаемые создателями компьютеров:

Цифровой или аналоговый

Фундаментальным решением при проектировании компьютера является выбор, будет ли он цифровой или аналоговой системой. Если цифровые компьютеры работают с дискретными численными или символьными переменными, то аналоговые предназначены для обработки непрерывных потоков поступающих данных. Сегодня цифровые компьютеры имеют значительно более широкий диапазон применения, хотя их аналоговые собратья все ещё используются для некоторых специальных целей. Следует также упомянуть, что здесь возможны и другие подходы, применяемые, к примеру, в импульсных и квантовых вычислениях, однако пока что они являются либо узкоспециализированными, либо экспериментальными решениями.

Примерами аналоговых вычислителей, от простого к сложному, являются: номограмма, логарифмическая линейка, астролябия, осциллограф, телевизор, аналоговый звуковой процессор, автопилот, мозг. [источник не указан 41 день]

Среди наиболее простых дискретных вычислителей известен абак, или обыкновенные счёты; наиболее сложной из такого рода систем является суперкомпьютер.

Система счисления

Примером компьютера на основе десятичной системы счисления является первая американская вычислительная машина Марк I.

Важнейшим шагом в развитии вычислительной техники стал переход к внутреннему представлению чисел в двоичной форме.[9] Это значительно упростило конструкции вычислительных устройств и периферийного оборудования. Принятие за основу двоичной системы счисления позволило более просто реализовывать арифметические функции и логические операции.

Тем не менее, переход к двоичной логике был не мгновенным и безоговорочным процессом. Многие конструкторы пытались разработать компьютеры на основе более привычной для человека десятичной системы счисления. Применялись и другие конструктивные решения. Так, одна из ранних советских машин работала на основе троичной системы счисления, использование которой во многих отношениях более выгодно и удобно по сравнению с двоичной системой (проект троичного компьютера Сетунь был разработан и реализован талантливым советским инженером Н. П. Брусенцовым).

Под руководством академика Хетагурова Я. А. разработан «высоконадёжный и защищённый микропроцессор недвоичной системы кодирования для устройств реального времени», использующий систему кодирования 1 из 4 с активным нулём.

В целом, однако, выбор внутренней системы представления данных не меняет базовых принципов работы компьютера — любой компьютер может эмулировать любой другой.

Хранение программ и данных

Во время выполнения вычислений часто бывает необходимо сохранить промежуточные данные для их дальнейшего использования. Производительность многих компьютеров в значительной степени определяется скоростью, с которой они могут читать и писать значения в (из) памяти и её общей ёмкости. Первоначально компьютерная память использовалась только для хранения промежуточных значений, но вскоре было предложено сохранять код программы в той же самой памяти (архитектура фон Неймана, она же «принстонская»), что и данные. Это решение используется сегодня в большинстве компьютерных систем. Однако для управляющих контроллеров (микро-ЭВМ) и сигнальных процессоров более удобной оказалась схема, при которой данные и программы хранятся в различных разделах памяти (гарвардская архитектура).

Программирование

Джон фон Нейман — один из основоположников создания архитектуры современных компьютеров

Способность машины к выполнению определённого изменяемого набора инструкций (программы) без необходимости физической переконфигурации является фундаментальной особенностью компьютеров. Дальнейшее развитие эта особенность получила, когда машины приобрели способность динамически управлять процессом выполнения программы. Это позволяет компьютерам самостоятельно изменять порядок выполнения инструкций программы в зависимости от состояния данных. Первую реально работающую программируемую вычислительную машину сконструировал немец Конрад Цузе в 1941 году.

При помощи вычислений компьютер способен обрабатывать информацию по определённому алгоритму. Решение любой задачи для компьютера является последовательностью вычислений.

В большинстве современных компьютеров проблема сначала описывается в понятном им виде (при этом вся информация как правило представляется в двоичной форме — в виде единиц и нулей, хотя компьютер может быть реализован и на других основаниях, как целочисленных — например, троичный компьютер, так и нецелых), после чего действия по её обработке сводятся к применению простой алгебры логики. Поскольку практически вся математика может быть сведена к выполнению булевых операций[источник не указан 512 дней], достаточно быстрый электронный компьютер может быть применим для решения большинства математических задач, а также и большинства задач по обработке информации, которые могут быть сведены к математическим.

Было обнаружено, что компьютеры могут решить не любую математическую задачу. Впервые задачи, которые не могут быть решены при помощи компьютеров, были описаны английским математиком Аланом Тьюрингом.

Применение

Трёхмерная карта поверхности участка земной суши, построенная при помощи компьютерной программы

Первые компьютеры создавались исключительно для вычислений (что отражено в названиях «компьютер» и «ЭВМ»). Даже самые примитивные компьютеры в этой области во много раз превосходят людей (если не считать некоторых уникальных людей-счётчиков). Не случайно первым высокоуровневым языком программирования был Фортран, предназначенный исключительно для выполнения математических расчётов.

Вторым крупным применением были базы данных. Прежде всего, они были нужны правительствам и банкам. Базы данных требуют уже более сложных компьютеров с развитыми системами ввода-вывода и хранения информации. Для этих целей был разработан язык Кобол. Позже появились СУБД со своими собственными языками программирования.

Третьим применением было управление всевозможными устройствами. Здесь развитие шло от узкоспециализированных устройств (часто аналоговых) к постепенному внедрению стандартных компьютерных систем, на которых запускаются управляющие программы. Кроме того, всё бо́льшая часть техники начинает включать в себя управляющий компьютер.

Четвёртое. Компьютеры развились настолько, что стали главным информационным инструментом как в офисе, так и дома. Теперь почти любая работа с информацией зачастую осуществляется через компьютер — будь то набор текста или просмотр фильмов. Это относится и к хранению информации, и к её пересылке по каналам связи. Основное применение современных домашних компьютеров — навигация в Интернете и игры.

Пятое. Современные суперкомпьютеры используются для компьютерного моделирования сложных физических, биологических, метеорологических и других процессов и решения прикладных задач. Например, для моделирования ядерных реакций или климатических изменений. Некоторые проекты проводятся при помощи распределённых вычислений, когда большое число относительно слабых компьютеров одновременно работает над небольшими частями общей задачи, формируя таким образом очень мощный компьютер.

Наиболее сложным и слаборазвитым применением компьютеров является искусственный интеллект — применение компьютеров для решения таких задач, где нет чётко определённого более или менее простого алгоритма. Примеры таких задач — игры, машинный перевод текста, экспертные системы.

См. также

Примечания

Ссылки

dis.academic.ru

Компьютер - это... Что такое Компьютер?

Компью́тер (англ. computer, МФА: [kəmˈpjuː.tə(ɹ)][1] — «вычислитель») — устройство или система, способная выполнять заданную, чётко определённую последовательность операций. Это чаще всего операции численных расчётов и манипулирования данными, однако сюда относятся и операции ввода-вывода. Описание последовательности операций называется программой.[2]Электро́нная вычисли́тельная маши́на, ЭВМ — комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.[3]

Название «ЭВМ», принятое в русскоязычной научной литературе, является синонимом компьютера. В настоящее время оно почти вытеснено из бытового употребления и в основном используется инженерами цифровой электроники, как правовой термин в юридических документах, а также в историческом смысле — для обозначения компьютерной техники 1940—1980-х годов и больших вычислительных устройств, в отличие от персональных.

Электронная вычислительная машина подразумевает использование электронных компонентов в качестве её функциональных узлов, однако компьютер может быть устроен и на других принципах — он может быть механическим, биологическим, оптическим, квантовым и т. п. (подробнее: Классы компьютеров#По виду рабочей среды), работая за счёт перемещения механических частей, движения электронов, фотонов или эффектов других физических явлений. Кроме того, по типу функционирования вычислительная машина может быть цифровой (ЦВМ) и аналоговой (АВМ).

Слово компьютер является производным от английских слов to compute, computer, которые переводятся как «вычислять», «вычислитель» (английское слово, в свою очередь, происходит от латинского computāre — «вычислять»). Первоначально в английском языке это слово означало человека, производящего арифметические вычисления с привлечением или без привлечения механических устройств. В дальнейшем его значение было перенесено на сами машины, однако современные компьютеры выполняют множество задач, не связанных напрямую с математикой.

Впервые трактовка слова компьютер появилась в 1897 году в Оксфордском словаре английского языка. Его составители тогда понимали компьютер как механическое вычислительное устройство. В 1946 году словарь пополнился дополнениями, позволяющими разделить понятия цифрового, аналогового и электронного компьютера.

История

  • 3000 лет до н. э. — в Древнем Вавилоне были изобретены первые счёты — абак.
  • 500 лет до н. э. — в Китае появился более «современный» вариант абака с косточками на соломинках — суаньпань.
  • 87 год до н. э. — в Греции был изготовлен «антикитерский механизм» — механическое устройство на базе зубчатых передач, представляющее собой специализированный астрономический вычислитель.
  • 1492 год — Леонардо да Винчи в одном из своих дневников приводит эскиз 13-разрядного суммирующего устройства с десятизубцовыми кольцами. Хотя работающее устройство на базе этих чертежей было построено только в XX веке, всё же реальность проекта Леонардо да Винчи подтвердилась.
Суммирующая машина Паскаля
  • XVI век — в России появились счёты, в которых было 10 деревянных шариков на проволоке.
  • 1623 год — Вильгельм Шиккард, профессор университета Тюбингена, разрабатывает устройство на основе зубчатых колес («считающие часы») для сложения и вычитания шестиразрядных десятичных чисел. Было ли устройство реализовано при жизни изобретателя, достоверно не известно, но в 1960 году оно было воссоздано и проявило себя вполне работоспособным.
  • 1630 год — Ричард Деламейн создаёт круговую логарифмическую линейку.
  • 1642 год — Блез Паскаль представляет «Паскалину» — первое реально осуществлённое и получившее известность механическое цифровое вычислительное устройство. Прототип устройства суммировал и вычитал пятиразрядные десятичные числа. Паскаль изготовил более десяти таких вычислителей, причём последние модели оперировали числами с восемью десятичными разрядами.
  • 1673 год — известный немецкий философ и математик Готфрид Вильгельм Лейбниц построил механический калькулятор, который выполнял умножение, деление, сложение и вычитание. Позже Лейбниц описал двоичную систему счисления и обнаружил, что если записывать определенные группы двоичных чисел одно под другим, то нули и единицы в вертикальных столбцах будут регулярно повторяться, и это открытие навело его на мысль, что существуют совершенно новые законы математики. Лейбниц решил, что двоичный код оптимален для системы механики, которая может работать на основе перемежающихся активных и пассивных простых циклов. Он пытался применить двоичный код в механике и даже сделал чертёж вычислительной машины, работавшей на основе его новой математики, но вскоре понял, что технологические возможности его времени не позволяют создать такую машину.[4]
  • Примерно в это же время Исаак Ньютон закладывает основы математического анализа.
  • 1723 год — немецкий математик и астроном Христиан Людвиг Герстен на основе работ Лейбница создал арифметическую машину. Машина высчитывала частное и число последовательных операций сложения при умножении чисел. Кроме того, в ней была предусмотрена возможность контроля за правильностью ввода данных.
  • 1786 год — немецкий военный инженер Иоганн Мюллер в ходе работ по усовершенствованию механического калькулятора на ступенчатых валиках Лейбница, придуманного его соотечественником Филиппом Хахном[5], выдвигает идею «разностной машины» — специализированного калькулятора для табулирования логарифмов, вычисляемых разностным методом.
  • 1801 год — Жозеф Мари Жаккар строит ткацкий станок с программным управлением, программа работы которого задается с помощью комплекта перфокарт.
  • 1820 год — первый промышленный выпуск арифмометров. Первенство принадлежит французу Тома де Кальмару.
  • 1822 год — английский математик Чарльз Бэббидж изобрёл, но не смог построить, первую разностную машину (специализированный арифмометр для автоматического построения математических таблиц) (см.: Разностная машина Чарльза Бэббиджа).
  • 1840 год — Томас Фаулер (англ. Great Torrington) построил деревянную троичную счётную машину с троичной симметричной системой счисления.[6][7]
  • 1855 год — братья Георг и Эдвард Шутц (англ. George & Edvard Scheutz) из Стокгольма построили первую разностную машину на основе работ Чарльза Бэббиджа.
  • 1876 год — русским математиком П. Л. Чебышевым создан суммирующий аппарат с непрерывной передачей десятков. В 1881 году он же сконструировал к нему приставку для умножения и деления (арифмометр Чебышёва).
  • 1884—1887 годы — Холлерит разработал электрическую табулирующую систему, которая использовалась в переписях населения США 1890 и 1900 годов и Российской империи в 1897 году.
  • 1912 год — создана машина для интегрирования обыкновенных дифференциальных уравнений по проекту русского учёного А. Н. Крылова.
  • 1927 год — в Массачусетском технологическом институте (MIT) Вэниваром Бушем был разработан механический аналоговый компьютер.[8]
  • 1938 год — немецкий инженер Конрад Цузе вскоре после окончания в 1935 году Берлинского политехнического института построил свою первую машину, названную Z1. (В качестве его соавтора упоминается также Гельмут Шрейер (нем. Helmut Schreyer)). Это полностью механическая программируемая цифровая машина. Модель была пробной и в практической работе не использовалась. Её восстановленная версия хранится в Немецком техническом музее в Берлине. В том же году Цузе приступил к созданию машины Z2 (Сначала эти компьютеры назывались V1 и V2. По немецки это звучит «Фау1» и «Фау2» и чтобы их не путали с ракетами, компьютеры переименовали в Z1 и Z2).

Экспоненциальное развитие компьютерной техники

Диаграмма Закона Мура. Количество транзисторов удваивается каждые 2 года

После изобретения интегральной схемы развитие компьютерной техники резко ускорилось. Этот эмпирический факт, замеченный в 1965 году соучредителем компании Intel Гордоном Е. Муром, назвали по его имени Законом Мура. Столь же стремительно развивается и процесс миниатюризации компьютеров. Первые электронно-вычислительные машины (например, такие, как созданный в 1946 году ЭНИАК) были огромными устройствами, весящими тонны, занимавшими целые комнаты и требовавшими большого количества обслуживающего персонала для успешного функционирования. Они были настолько дороги, что их могли позволить себе только правительства и большие исследовательские организации, и представлялись настолько экзотическими, что казалось, будто небольшая горстка таких систем сможет удовлетворить любые будущие потребности. В контрасте с этим, современные компьютеры — гораздо более мощные и компактные и гораздо менее дорогие — стали воистину вездесущими.

Математические модели

Архитектура и структура

Архитектура компьютеров может изменяться в зависимости от типа решаемых задач. Оптимизация архитектуры компьютера производится с целью максимально реалистично математически моделировать исследуемые физические (или другие) явления. Так, электронные потоки могут использоваться в качестве моделей потоков воды при компьютерном моделировании (симуляции) дамб, плотин или кровотока в человеческом мозгу. Подобным образом сконструированные аналоговые компьютеры были обычны в 1960-х годах, однако сегодня стали достаточно редким явлением.

Результат выполненной задачи может быть представлен пользователю при помощи различных устройств ввода-вывода информации, таких как ламповые индикаторы, мониторы, принтеры, проекторы и т. п.

Классификация

По назначению

Персональный компьютер IBM PC/XT

Элементная основа

Первая троичная ЭВМ «Сетунь» на ферритдиодных ячейках была построена Брусенцовым в МГУ.

Поверхностный характер представленного подхода к классификации компьютеров очевиден. Он обычно используется лишь для обозначения общих черт наиболее часто встречающихся компьютерных устройств. Быстрые темпы развития вычислительной техники означают постоянное расширение областей её применения и быстрое устаревание используемых понятий. Для более строгого описания особенностей того или иного компьютера обычно требуется использовать другие схемы классификаций.

Физическая реализация

Более строгий подход к классификации основан на отслеживании используемых при создании компьютеров технологий. Самые ранние компьютеры были полностью механическими системами. Тем не менее, уже в 1930-х годах телекоммуникационная промышленность предложила разработчикам новые, электромеханические компоненты (реле), а в 1940-х были созданы первые полностью электронные компьютеры, имевшие в своей основе электронные лампы. В 1950—1960-х годах на смену лампам пришли транзисторы, а в конце 1960-х — начале 1970-х годов — используемые и сегодня полупроводниковые интегральные схемы (кремниевые чипы).

Приведённый перечень технологий не является исчерпывающим; он описывает только основную тенденцию развития вычислительной техники. В разные периоды истории исследовалась возможность создания вычислительных машин на основе множества других, ныне позабытых и порою весьма экзотических технологий. Например, существовали планы создания гидравлических и пневматических компьютеров, между 1903 и 1909 годами некто Перси И. Луджет даже разрабатывал проект программируемой аналитической машины, работающей на базе пошивочных механизмов (переменные этого вычислителя планировалось определять при помощи ниточных катушек).

В настоящее время ведутся серьёзные работы по созданию оптических компьютеров, использующих вместо традиционного электричества световые сигналы. Другое перспективное направление подразумевает использование достижений молекулярной биологии и исследований ДНК. И, наконец, один из самых новых подходов, способный привести к грандиозным изменениям в области вычислительной техники, основан на разработке квантовых компьютеров.

Впрочем, в большинстве случаев технология исполнения компьютера является гораздо менее важной, чем заложенные в его основу конструкторские решения.

По способностям

Одним из наиболее простых способов классифицировать различные типы вычислительных устройств является определение их способностей. Все вычислители могут, таким образом, быть отнесены к одному из трёх типов:

Современный компьютер общего назначения

При рассмотрении современных компьютеров наиболее важной особенностью, отличающей их от ранних вычислительных устройств, является то, что при соответствующем программировании любой компьютер может подражать поведению любого другого (хоть эта возможность и ограничена, к примеру, вместимостью средств хранения данных или различием в скорости). Таким образом, предполагается, что современные машины могут эмулировать любое вычислительное устройство будущего, которое когда-либо может быть создано. В некотором смысле эта пороговая способность полезна для различия компьютеров общего назначения и устройств специального назначения. Определение «компьютер общего назначения» может быть формализовано в требовании, чтобы конкретный компьютер был способен подражать поведению универсальной машины Тьюринга. Первым компьютером, удовлетворяющим такому условию, считается машина Z3, созданная немецким инженером Конрадом Цузе в 1941 году (доказательство этого факта было проведено в 1998 году).

Конструктивные особенности

Современные компьютеры используют весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики. Ниже приведены наиболее важные вопросы, решаемые создателями компьютеров:

Цифровой или аналоговый

Фундаментальным решением при проектировании компьютера является выбор, будет ли он цифровой или аналоговой системой. Если цифровые компьютеры работают с дискретными численными или символьными переменными, то аналоговые предназначены для обработки непрерывных потоков поступающих данных. Сегодня цифровые компьютеры имеют значительно более широкий диапазон применения, хотя их аналоговые собратья все ещё используются для некоторых специальных целей. Следует также упомянуть, что здесь возможны и другие подходы, применяемые, к примеру, в импульсных и квантовых вычислениях, однако пока что они являются либо узкоспециализированными, либо экспериментальными решениями.

Примерами аналоговых вычислителей, от простого к сложному, являются: номограмма, логарифмическая линейка, астролябия, осциллограф, телевизор, аналоговый звуковой процессор, автопилот, мозг. [источник не указан 41 день]

Среди наиболее простых дискретных вычислителей известен абак, или обыкновенные счёты; наиболее сложной из такого рода систем является суперкомпьютер.

Система счисления

Примером компьютера на основе десятичной системы счисления является первая американская вычислительная машина Марк I.

Важнейшим шагом в развитии вычислительной техники стал переход к внутреннему представлению чисел в двоичной форме.[9] Это значительно упростило конструкции вычислительных устройств и периферийного оборудования. Принятие за основу двоичной системы счисления позволило более просто реализовывать арифметические функции и логические операции.

Тем не менее, переход к двоичной логике был не мгновенным и безоговорочным процессом. Многие конструкторы пытались разработать компьютеры на основе более привычной для человека десятичной системы счисления. Применялись и другие конструктивные решения. Так, одна из ранних советских машин работала на основе троичной системы счисления, использование которой во многих отношениях более выгодно и удобно по сравнению с двоичной системой (проект троичного компьютера Сетунь был разработан и реализован талантливым советским инженером Н. П. Брусенцовым).

Под руководством академика Хетагурова Я. А. разработан «высоконадёжный и защищённый микропроцессор недвоичной системы кодирования для устройств реального времени», использующий систему кодирования 1 из 4 с активным нулём.

В целом, однако, выбор внутренней системы представления данных не меняет базовых принципов работы компьютера — любой компьютер может эмулировать любой другой.

Хранение программ и данных

Во время выполнения вычислений часто бывает необходимо сохранить промежуточные данные для их дальнейшего использования. Производительность многих компьютеров в значительной степени определяется скоростью, с которой они могут читать и писать значения в (из) памяти и её общей ёмкости. Первоначально компьютерная память использовалась только для хранения промежуточных значений, но вскоре было предложено сохранять код программы в той же самой памяти (архитектура фон Неймана, она же «принстонская»), что и данные. Это решение используется сегодня в большинстве компьютерных систем. Однако для управляющих контроллеров (микро-ЭВМ) и сигнальных процессоров более удобной оказалась схема, при которой данные и программы хранятся в различных разделах памяти (гарвардская архитектура).

Программирование

Джон фон Нейман — один из основоположников создания архитектуры современных компьютеров

Способность машины к выполнению определённого изменяемого набора инструкций (программы) без необходимости физической переконфигурации является фундаментальной особенностью компьютеров. Дальнейшее развитие эта особенность получила, когда машины приобрели способность динамически управлять процессом выполнения программы. Это позволяет компьютерам самостоятельно изменять порядок выполнения инструкций программы в зависимости от состояния данных. Первую реально работающую программируемую вычислительную машину сконструировал немец Конрад Цузе в 1941 году.

При помощи вычислений компьютер способен обрабатывать информацию по определённому алгоритму. Решение любой задачи для компьютера является последовательностью вычислений.

В большинстве современных компьютеров проблема сначала описывается в понятном им виде (при этом вся информация как правило представляется в двоичной форме — в виде единиц и нулей, хотя компьютер может быть реализован и на других основаниях, как целочисленных — например, троичный компьютер, так и нецелых), после чего действия по её обработке сводятся к применению простой алгебры логики. Поскольку практически вся математика может быть сведена к выполнению булевых операций[источник не указан 512 дней], достаточно быстрый электронный компьютер может быть применим для решения большинства математических задач, а также и большинства задач по обработке информации, которые могут быть сведены к математическим.

Было обнаружено, что компьютеры могут решить не любую математическую задачу. Впервые задачи, которые не могут быть решены при помощи компьютеров, были описаны английским математиком Аланом Тьюрингом.

Применение

Трёхмерная карта поверхности участка земной суши, построенная при помощи компьютерной программы

Первые компьютеры создавались исключительно для вычислений (что отражено в названиях «компьютер» и «ЭВМ»). Даже самые примитивные компьютеры в этой области во много раз превосходят людей (если не считать некоторых уникальных людей-счётчиков). Не случайно первым высокоуровневым языком программирования был Фортран, предназначенный исключительно для выполнения математических расчётов.

Вторым крупным применением были базы данных. Прежде всего, они были нужны правительствам и банкам. Базы данных требуют уже более сложных компьютеров с развитыми системами ввода-вывода и хранения информации. Для этих целей был разработан язык Кобол. Позже появились СУБД со своими собственными языками программирования.

Третьим применением было управление всевозможными устройствами. Здесь развитие шло от узкоспециализированных устройств (часто аналоговых) к постепенному внедрению стандартных компьютерных систем, на которых запускаются управляющие программы. Кроме того, всё бо́льшая часть техники начинает включать в себя управляющий компьютер.

Четвёртое. Компьютеры развились настолько, что стали главным информационным инструментом как в офисе, так и дома. Теперь почти любая работа с информацией зачастую осуществляется через компьютер — будь то набор текста или просмотр фильмов. Это относится и к хранению информации, и к её пересылке по каналам связи. Основное применение современных домашних компьютеров — навигация в Интернете и игры.

Пятое. Современные суперкомпьютеры используются для компьютерного моделирования сложных физических, биологических, метеорологических и других процессов и решения прикладных задач. Например, для моделирования ядерных реакций или климатических изменений. Некоторые проекты проводятся при помощи распределённых вычислений, когда большое число относительно слабых компьютеров одновременно работает над небольшими частями общей задачи, формируя таким образом очень мощный компьютер.

Наиболее сложным и слаборазвитым применением компьютеров является искусственный интеллект — применение компьютеров для решения таких задач, где нет чётко определённого более или менее простого алгоритма. Примеры таких задач — игры, машинный перевод текста, экспертные системы.

См. также

Примечания

Ссылки

3dic.academic.ru

Карманный персональный компьютер — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 мая 2017; проверки требуют 24 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 мая 2017; проверки требуют 24 правки.

Карманный персональный компьютер (КПК, англ. Personal Digital Assistant, PDA — «личный цифровой секретарь») — портативное устройство, обладающее широкими функциональными возможностями. КПК часто называют наладонником (англ. palmtop) из-за небольших размеров. Изначально КПК предназначались для использования в качестве электронных органайзеров. С «классического» КПК невозможно совершать звонки, и КПК не является мобильным телефоном, поэтому к настоящему времени классические КПК практически полностью вытеснены коммуникаторами — КПК с модулем сотовой связи и смартфонами.

В английском языке словосочетание «карманный ПК» (Pocket PC) является торговой маркой фирмы Microsoft, то есть относится лишь к одной из разновидностей КПК, а не обозначает весь класс устройств. Словосочетание Palm PC («наладонный компьютер») также является конкретной торговой маркой. Для обозначения всего класса устройств в английском языке используется общепринятая аббревиатура PDA.

ru.wikipedia.org